Diploma Programme subject outline-Group 4: sciences					
School name	ELA GREEN SCHOOL School code 060876				
Name of the DP subject (indicate language)	Physics				
Level (indicate with X)	Higher X Standard completed in two years * Standard completed in one year *				
Name of the teacher who completed this outline	Roselin Mary.R	Date of IB training 3 May 2023			
Date when outline was completed	14 April 2023	Name of workshop (indicate name of subject and workshop category)	IB Category 1		

* All Diploma Programme courses are designed as two-year learning experiences. However, up to two standard level subjects, excluding languages ab initio and pilot subjects, can be completed in one year, according to conditions established in the Handbook of procedures for the Diploma Programme.

1. Course outline

- Use the following table to organize the topics to be taught in the course. If you need to include topics that cover other requirements you have to teach (for example, national syllabus), make sure that you do so in an integrated way, but also differentiate them using italics. Add as many rows as you need.
- This document should not be a day-by-day accounting of each unit. It is an outline showing how you will distribute the topics and the time to ensure that students are prepared to comply with the requirements of the subject.
- This outline should show how you will develop the teaching of the subject. It should reflect the individual nature of the course in your classroom and should not just be a "copy and paste" from the subject guide.
- If you will teach both higher and standard level, make sure that this is clearly identified in your outline.

	Topic/unit	Contents	Allocated time	Assessment	Resources
	(as identified in the IB subject guide) State the topics/units		One class is 45 minute s.	instruments to be used	List the main resources to beused, including information technology if applicable.
	in the order you are planning to teach them.		In one week there are 6 classes		
Year 1 July	Skills in the study of Physics	Physics: Tool 1 : Experimental techniques Making observations Measuring variables Tool 2 :Technology Tool 3 :Mathematics Summary of SI units Processing uncertainities Precision and accuracy Errors in measurement Relationships I. Linear relationships II. Non linear relationships	 About 5 teaching hours for skins in the study of Physics (SL/HL) Measurement in physics (1.5 hours) Uncertainties and errors (1.5 hours) Vectors and scalars (1.5 hours) At the end of this topic, the students will take 30 minutes to communicate and reflect on the topic. Skills: Thinking skills Research skills 	 Measurement in physics Formative assessment: (Exercises) According to the orders of magnitude. Uncertainties anderrors Formative assessment (Experiment report) Vectors and scalars Formative assessment (Exercises) Questions from past examination papers about vectors and 	 ✓ Websites: (1) <u>https://resources.ib</u> <u>o.org/</u> (2) Diploma Programme Approaches to teaching and learningwebsite. <u>https://xmltwo.ibo.</u> <u>or</u> <u>g/publications/DP/G</u> <u>r</u> <u>oup0/d_0_dpatl_gui</u> <u>1502_1/static/dpatl/guide-apr-to- learn.html</u> ◆ Books: 1. Pearson Science for the IB Dialoga 2nd
July/ August	Topic A: space,time and motion	 III. Using logs Uncertainity in the gradient Fractional uncertainties Vector and scalar quantities A.1 Kinematics: Distance and displacement Velocity and Speed 	 Inquiring Knowledgeable About 9 teaching hours for Topic A.1 Kinematics (SL) 	scalars.	 edition <u>https://www.pe</u> <u>arsonactivelear</u> <u>n.com/app/libra</u> <u>ry/series/view/</u> <u>1134387</u> Hodder Education Physics for the IB Diploma Third edition.

	 I. Average velocity and Instantaneous velocity II. Constant Velocity II. Relative Velocity Acceleration Constant acceleration in one dimension The signs of displacement, velocity and acceleration Free fall motion and Acceleration of free fall V. Measuring the acceleration due to gravity Graphical representation of Motion Gradient of displacement – time graph Gradient of velocity – time graph Projectile motion Modeling Projectile motion with air resistance 	 Skills: Thinking skills Research skills Self-management skills LPA: Knowledgeable 	• Formative assessment: 1.Exercises 2.Laboratory activities	https://www.ho ddereducation.c o.uk/subjects/ib = diploma/produc ts/16- 18/physics-for- the-ib-diploma- third-edition
--	---	--	---	---

Canatanakan	A.2 Forces and Momentum	About 10 teaching hours for Topic	
September		A.2 Forces and momentum (SL)	
	 Force Addition of forces Taking components Equilibrium Free-body diagrams Newton's first law of motion 	Skills:	 Summative assessment. Experiment report: Test the relationship between acceleration and force. (Use the knowledge of Topic A.1 to analyze the result.)
	 Types of force Tension Normal reaction Gravitational force (weight) Electric and magnetic forces Friction Dynamic friction Static friction Static friction Multi Buoyancy Air resistance Elastic restoring force 	LPA:	
	 The relationship between force and acceleration Momentum Impulse Newton's Second law of motion Examples Newton's third law of motion Examples 		

e	

October	A.3 Work, Energy and Power:		Summative	
	Work	About 8 teaching hours for Topic	Assessment	
	Graphical method of	A.3 Work,energy and power (SL)		
	determining work		Formative	
	done	Skills:	assessment	
	Work done by a	Thinking skills	(Exercises)	
	varying force	♦ Research skills		
	 Energy 	♦ Self-management skills		
	 Different types of 			
	Energy	♦ Enthusiasm		
	Kinetic Energy			
	Gravitational			
	Potential Energy			
	The Law of			
	conservation of			
	Energy			
	 Stores of Energy 			
	 Energy transfer 			
	Efficiency			
	 Energy and collisions 			
	Elastic collisions			
	Inelastic collisions			
	 Explosions 			
	Power			
	 Examples 			
	Efficiency and power			

November	A.4 Rigid Body Mechanics :	About 7 teaching hours for Topic	
	<u>(HL)</u>	A.4 Rigid Body Mechanics (HL)	
	Rotational motion		Formative
	Torque	Skills:	assessment
	I. Angular	♦ Thinking skills	(Exercises)
	speed and	♦ Research skills	
	angular		
	acceleration	LPA:	
	Equilibrium	♦ Risk takers	
	I. The balanced		
	beam		
	II. Levers		
	III. The bridge		
	Non- perpendicular		
	forces		
	Constant angular		
	acceleration		
	Newton's second law applied to angular		
	motion		
	Moment of inertia		
	Some common		
	shapes and their		
	moment of inertia		
	Rotational kinetic		
	energy		
	Angular momentum		

December	Торіс	D.1 Gravitational Fields: (SL/HL)	About 12 teaching hours for Topic	Formative
	D:Fields	SL Topics: 5 Hours	D.1 Gravitational Fields (SL/HL)	Assessment
		Gravitational force and		(Exercises)
		field	Skills:	Summative
		I. Newton's	♦ Thinking skills	assessment
		universal law of	♦ Research skills	• Group
		gravitation		discussion
		II. Extended bodies		(Search for information
		III. Sphere of mass	LPA:	and calculate the time
		IV. How fast does	♦ Inquirers	period of the planets in
		the apple drop ?		solar system).
		Gravitational field		
		I. Gravitational		
		field strength		
		II. Field lines		
		The Solar system		
		I. Kepler's Laws		
		II. Energy of an		
		orbiting body		
		III. Earth satellites		

January		D.1 : (HL Topics: 7 Hours)		Formative	
-		Gravitational potential in		Assessment	
		a uniform field		(Exercises)	
		I. Equipotentials			
		and field lines			
		Gravitational potential			
		due to a massive sphere			
		i. Equipotential			
		wells			
		II. Relationship			
		between field			
		lines and			
		potential			
		Escape speed			
January	Торіс	B.1 : Thermal energy transfers	About 6 teaching hours for Topic B.1	Formative	
	B:The	(SL)	Thermal energy transfers (SL)	assessment:	
	Particulate	The Particulate model of	Chiller	1.Exercises	
	nature of	matter	SKIIIS:		
	matter	 Ine three states of matter(Solid Liquid Cas) 	 ♦ Research skills 	2.Mind-map-	
		Brownian motion		Reflect on the	
		Density		thermal energy and	
		 Internal energy 		its transfer.	
		 Internal energy and the 	LPA:		
		three states of matter	♦ Caring		
		Temperature			
		Temperature and kinetic			
		energy			
		Kelvin Scale			
		Iemperature and			

	molecular speed		
	• Thermal energy and its		
	transfer		
	(Conduction,		
	Convection,Radiation)		
	 Black – body radiation 		
	I. The black body		
	spectrum		
	ll Wien's		
	displacement		
	uispiacement		
	law		
	III. Inverse square		
	law		
	IV. Preventing		
	heat loss		
	• Thermal capacity		
	 Specific heat capacity 		
	Phase change		
	 Specific latent heat 		
	 Graphical 		
	reperesentation of		
	heat		
	• Thermal energy loss		
	- mermar energy 1000		

February	Topic A: space,time and motion	 A.5 Galilean and special relativity Relative Velocity Galilean transformations for length, velocity and acceleration The nature of light The nature of light The speed of light Momentum of light Special relativity The two postulates of special relativity Lorentz transformations The muon experiment Space – time interval II. Space – time diagrams 	About 8 teaching hours for Topic A.5 Galilean and special relativity (HL) Skills:	• Formative assessment: (Exercises)	

February/ March	 B.2 Greenhouse effect Radiation from the Sun Interaction between solar radiation and atmosphere Ultraviolet radiation Visible light Infrared radiation Radiation reaching the earth Interaction between light and solids Albedo Emissivity The greenhouse effect Energy balance Earth with 	About 6 teaching hours for Topic B.2 Greenhouse effect (SL) Skills:	 Formative assessment: (Exercises) Formative assessment: (Discussion on Global Warming)
	 Interaction between light and solids II. Albedo III. Emissivity IV. The greenhouse effect Energy balance I. Earth with atmosphere II. Earth without atmosphere Global Warming Increase in solar constant II. Reduced albedo III. Reduced emissivity IV. Enhanced greenhouse effect 		

March	B 3 Gas Jaws	About 6 teaching hours for	
waten	Avagadra's hypothesis	Topic B 2 Gos Jowe (SL)	e Formativo
	Avagaulo s hypothesis	TOPIC B.S Gas laws (SL)	• Formative
	Ine mole and Avogadro's		assessment:
	constant	Skills:	(Exercises)
	 The ideal gas 	♦ Thinking skills	
	I. Defining the	♦ Research skills	
	state of gas		
	II. Volume		
	III. Temperature		
	IV. Pressure	LPA:	
	V. Relationship	♦ Caring	
	between P.V.T	A Risk takers	
	and n		
	The Boyle- Mariotte		
	• Gay-Lussac's law		
	Charles' Law		
	The ideal gas		
	equation		
	 Internal energy of a 		
	gas		

March/	Topic C: Wave	C.1 Simple harmonic motion	About 7 teaching hours for Topic C.1	Formative assessment:
April	behavior	(SL/HL)	Simple harmonic motion (SL/HL)	(Experiment report) The
		SL Topics: 3 Hours		relationship between
		The simple	Skills:	time periodand length of
		pendulum	♦ Thinking skills	a pendulum.
		Simple harmonic	♦ Research skills	
		motion		
		 SHM and the sine 	LPA:	
		function	♦ Caring	
		 Terms and quantities 	♦ Risk takers	
		 Mass on a spring 		
		Graphical		
		representation of		
		SHM		
		 Finding the 		
		frequencies of a		
		pendulum and mass		
		on a spring		
		Energy transfers		
		during SHM		
		• Phase		Formative
		HL Topics: 4 Hours		assessment:
		Problems using the		(Exercises)
		equations for simple		
		narmonic motion		
		Phase angle		

			Formative	
April	C.2 Wave model:	About 3 teaching hours for Topic C.2	assessment	
	Waves	Wave model (SL)	(Exercises)	
	I. Reflection			
	II. Refraction	Skills:		
	III. Interference	♦ Thinking skills		
	IV. Diffraction	♦ Research skills		
	V. Transfer of			
	energy	LPA:		
	Wave pulse in a string	♦ Caring		
	I. Reflection of a	♦ Risk takers		
	wave pulse			
	II. Superposition			
	of wave pulses			
	III. Continuous			
	wave in a			
	string			
	(transverse			
	wave)			
	Graphical			
	representation of a			
	transverse wave			
	Graphical representation of a			
	Droportios of sound			
	The electromagnetic			
	spectrum			
	Some Light facts			

	Topic B :The	B.4 Thermodynamics (HL)	About 8 teaching hours for Topic	
April/	Particulate	Thermodynamic	B.4 Thermodynamics (HL)	Formative
May	nature of	systems		assessment
	matter	I. Workdone by	a Skills:	(Exercises)
		gas	♦ Thinking skills	Summative
		• The first law of	♦ Research skills	Assessment
		thermodynamics		
		I. Using P-V	LPA:	
		diagrams	♦ Caring	
			♦ Risk takers	
		Constant pressure		
		compression(isobaric)		
		I. Constant		
		volume		
		increase in		
		temperature		
		II. Isothermal		
		expansion		
		III. Adiabatic		
		expansion		
		Cyclic processes		
		I. Energy flow		
		diagram		
		II. The carnot		
		cycle		
		III. The reverse		
		cycle		
		Ine second law of		
		thermodynamics		
		I. Entropy		
		IA - Data Collection and		
		Pavision for Summative		

			About 11 teaching hours for Topic	
Year 2			C.3 Wave Phenomena (SL)	
		C.3 Wave Phenomena :		
July	Topic C: Wave	SL Topics: 5 Hours	Skills:	
	behavior	Wavefronts	♦ Thinking skills	Formative assessment
		I. Wave	♦ Research skills	
		propagation		1. Laboratory activity
		(Hugen's		Measuring the refractive
		construction)	LPA:	index.
		 Reflection of water 	♦ Caring	
		waves	\diamond Risk takers	2. Exercises
		Refraction of water		
		waves		
		I. Snell's law		
		Diffraction of water		
		waves		
		Interference of water		
		waves		
		I. Path difference	2	
		and phase		
		difference		
		Reflection of light		
		Refraction of light Dispersion		
		Dispersion The critical		
		angle		
		II Total internal		
		reflection		
		III. Optical fibers		
		Interference of light		
		I. Two – slit		
July/Anous	t	interference		
July/Muguo				
		HL Topics :6 Hours		
		Diffraction of light at a		
		single slit		
		I. The central		
		maximum		
		II. The first		

August	minimum Effect of diffraction Multiple –slit diffraction Diffraction at the slits Interference between slits Geometrical model Producing spectra		
	C4:Standing wayos and	About 4 tooching bours for Tonic	. Formative
	C4:Standing waves and	A Standing Manager discourses	• Formative
	resonance	C.4 Standing Waves and resonance	assessment
	Standing waves in	(SL)	(Exercises)
	Strings		Soving problems
	Difference between		involving the
	progressive waves and		frequency of a
	Standing waves	Kesearch skills	harmonic, length of the
	Stringed instruments Stending waves in		standing wave, and the
	Standing waves in		speed of the wave.
	closed pipes		
	Standing waves in	Caring	
	open pipes	☆ RISK Takers	
	Wind Instruments Damped barmonic		
	Damped narmonic motion		
	Eorced vibration		
			Formation
	C5:Donnler effect	About 4 teaching hours for Tonic	Formative
	SI Topics · 2 Hours	C 5 Doppler Effect (SI / UI)	assessment (Eversions)
	The Donnler effect		(Exercises)
	The Doppler effect and	Skills	
	electromagnetic	Thinking skills	
	radiation	 ♦ Research skills 	
	The expanding		
September	universe		
1	Hubble's Law	LPA:	Formative
	HL Topics: 2 Hours	♦ Caring	assessment
	The same extreme	♦ Risk takers	(Exercises)
	diference between the		

	speed of the wave and			
	the relative speed of its			
	observers and sources	,		
	is less likely for sound			
	or mechanical waves			
	so alternative			
	equations are needed			
	for quantitative			
	evaluation			
	Worked examples			
September/	• Worked examples			
October	B. 5 · Current and circuits:	About 6 teaching hours for Tonic	• Formative	
	Simple circuits	B 5 Current and circuits (SI)	• Formative	
		Skiller	(Exercises)	
		→ Thinking skills		
	Electric cells and			
	batteries			
	resistance			
		LFA. 人 Coring		
	terminal	 ✓ Calling A Dick takara 		
	notential			
	difference			
	Generators			
	Simplest circuit			
	Electrical power			
	Combination of			
	components			
	II Resistors in			
	narallal			
	III Calls in series			

		V			
		Electrical			
		masurement			
		I Measurement			
		of notantial			
		difference			
		of current			
		IV Light			
		dependent			
		resistor			
October/	Tonic D · Fields	V Thermistor			
November					
		D.2 : Electric and magnetic	About 14 teaching hours for Topic	Eormative	
		fields	D.2 Electric and magnetic fields	assessment	
			(SL/HL)	(Exercises)	
		SL Topics: 8 Hours		(
		Electric force	Skills:		
		Charge transfer by	♦ Thinking skills		
		contact	♦ Research skills		
		• Charge ,Q			
		I. Fundamental			
		charge,e	LPA:		
		II. Millikan's oil	♦ Caring		
		drop	♦ Risk takers		
		experiment			
		Electric field			
		I. Field			
		strength,E			
		II. Field Lines			
		Coulomb's law			
		I. Potential in a			
		uniform field			
		II. Earthing			
		III. Charging by			
		induction			
		IV. Conductors			

	and current			
	I. Magnetic field			
	Eield caused by			
	• Field caused by			
	I Magnetic flux			
	density B			
	II. The field inside			
	a coil			
November	III. The field inside			
November	a solenoid			
	HL Topics :6 Hours		Formative	
	Electric field and		assessment	
	energy		(Exercises)	
	 Potential ,V 			
	Dipoles			
	Potential difference			
December				
	D.3 : Motion in	About 6 teaching hours for lopic	Formative	
	electromagnetic fields :	D.3 Motion in electromagnetic	assessment	
	 Force on a current – carrying conductor 	fields (SL)	(Exercises)	
		Skille	Summative	
	Parallel current –	Skills. ♦ Thinking skills	Assessment	
	carrying conductor	 ♦ Besearch skills 		
	I. Parallel wires			
	II. Non-			
	perpendicular	LPA:		
	fields	♦ Caring		
	Charges in magnetic	♦ Risk takers		
	fields			
	I. The electron			
	gun			
	II. Motion of			
	electrons in a			
	unitorm			
	electric field			

January	electrons in uniform magnetic field IV. Electrons in perpendicularl y oriented electric and magnetic fields	5		
Janual y				
	 D.4 : Induction (HL) Conductor moving in a magnetic field Induced emf Induced emf Induced emf Induced emf Faraday's law Rate of change of flux Len's law Coils in changing magnetic fields Coil in a changing field Coil entering and leaving a magnetic field Coil rotating in changing 	About 6 teaching hours for Topic D.4 Induction (HL) Skills:	• Formative assessment (Exercises)	
	V. The size of the emf induced in			
	a rotating coil VI. Effect of increasing angular			

	VII.	velocity Self - induction		

January/ February	Topic E•Nuclear and	E.1 Structure of the atom:	About 9 teaching hours for		
February	E:Nuclear and Quantum Physics	 SL TOPICS : 6 Hours The arrangement of charge in the atom The Rutherford model Charge and mass Electrons The connection between atoms and light The quantum nature of light HL TOPICS : 3 Hours Size of the nucleus The Bohr model 	Topic E.1 Structure of the atom (SL) Skills: ◇ Thinking skills ◇ Research skills LPA: ◇ Caring ◇ Risk takers	Formative assessment (Exercises)	

	E.2 Quan	tum Physics: (HL)	About 8 teaching hours for	Formative	
February	• T	he Quantum nature	Topic E.2 Quantum Physics (HL)	assessment	
	0	of light		(Exercises)	
		I. The	Skills:		
		photoelectric	♦ Thinking skills		
		effect	♦ Research skills		
		II. The Zinc plate			
		experiment	LPA:		
		III. Quantum	♦ Caring		
		model of light	♦ Risk takers		
		IV. Millikan's			
		photoelectric			
		experiment			
		V. Einstein's			
		photoelectric			
		equation			
	• T	he wave nature of			
	n	natter			
		I. Detecting			
		electrons			
		II. Electron			
		diffraction			
		III. The de Broglie			
		hypothesis			
		IV. Probability			
		waves			
	• T	he Compton effect			

March	E.3 Radioactive decay: (SL/HL)	About 12 teaching hours for Topic	Formative assessment	
	<u>SL TOPICS : 7 Hours</u>	E.3 Radioactive decay (SL/HL)	(Exercises)	
	The nuclear force			
	Binding enegy	Skills:		
	Radioactive decay	♦ Thinking skills		
	Alpha decay	♦ Research skills		
	• Beta decay (
	Minus,Plus)	LPA:		
	Gamma radiation	♦ Caring		
	• Decay	♦ Risk takers		
	 Exponential decay of 			
	radioactive isotopes			
	Half life			
	Count rate			
	 Background radiation 			
	Applications of			
	radioactive isotopes		Formative assessment	
	HL TOPICS :5 Hours		(Exercises)	
	 The strong nuclear 			
	force			
	 Nuclear energy levels 			
	 Beta particles (NOS) 			
	 Foam decay curve 			
	equation			
	 Exponential decay of 			
	radioactive isotopes			
	Relationship between			
	decay constant and			
	half –life			
	Worked example			

April	 E.4 Fission: (SL) Nuclear fission Nuclear power The chain reaction Moderation Critical mass The nuclear power station Meltdown Low level waste High level waste 	About 4 teaching hours for Topic E.4 Fission (SL) Skills:	Formative assessment (Exercises)	
	 E.5 Fusion and stars :(SL) Nuclear fusion Astronomical distances Stellar parallax EM radiation from stars Apparent brightness Luminosity Stellar spectra Absorption lines Colours of stars Hertzsprung-Russell (HR) diagrams Main sequence Red giants Supergiants White dwarfs Variable stars The birth of a star Sun-sized stars Large stars 	About 6 teaching hours for Topic E.5 Fusion and stars (SL) Skills:	Formative assessment (Exercises)	

2. The group 4 project

As the IB guides say, "The group 4 project is a collaborative activity where students from different group 4 subjects work together on a scientific or technological topic, allowing for concepts and perceptions from across the disciplines to be shared in line with aim 10—that is, to 'encourage an understanding of the relationships between scientific disciplines and the overarching nature of the scientific method." Describe how you will organize this activity. Indicate the timeline and subjects involved, if applicable.

1.	Selecting a topic
	To increase the students' enthusiasm, I think the topic of the group 4 project should be selected by students themselves. And the teachers could
	give advice on the viability or provide several topics for the students. As the group 4 project is an interdisciplinary activity, I prefer to give topic
	such as investigating the environmental impact of all grent types of renewable energy sources focusing on the concept sustainability which has close relationship with other subjects
2.	Subjects involved
	Students from physics, chemistry, and biology generally participate in the Group 4 project in IB DP Physics.
з.	Timeline
	It is necessary to ensure that the students have sufficient knowledge and enough time to complete the subject. I will start the group 4 project in
	year 1 and finish it in year 2.
	(1) Planning (2 hours)
	At the end of year 1, the students will select topics, which is also part of the planning stage. Through helpful discussion and careful selection, the group 4 students can get a preliminary judgment of the topic. Then they will discuss the central topic and share ideas and information at
	the planning stage.
	(2) Action (6 hours)
	In the middle of year 2, it will take about two weeks in normal scheduled class time for the students to take action of the group 4 project.
	(3) Evaluation (2 hours)
	After the students finish the action stage, I will give them some time to organize their materials and results. Before the end of year 2, they will do the final presentations to evaluate their whole processes.
1	

3. IB practical work and the internal assessment requirement to be completed during the course

As you know, students should undergo practical work related to the syllabus.

- Physics, chemistry and biology: 40 hours (at standard level) or 60 hours (at higher level)
- Computer science: 40 hours (at standard level) or 40 hours (at higher level)
- Design technology: 60 hours (at standard level) or 96 hours (at higher level)
- Sport, exercise and health science: 40 hours (at standard level) or 60 hours (at higher level)

Use the table below to indicate the name of the experiment you would propose for the different topics in the syllabus.

An example is given. Add as many rows as necessary.

Name of the topic	Experiment	Any ICT used? Remember you must use all five within your programme.
Acids and bases	Titration	Yes
A.1 Kinematics	Determining the acceleration of free-fall	yes
B.1 Thermal energy transfers	Applying the calorimetric techniques of specific heat capacity or specific latent heat	No
B.3 Gas Laws	Investigating at least one gas law	Yes
C.2 Wave model	Investigating the speed of sound	Yes
C.3 Wave Phenomena	Determining refractive index	Yes
B.5 Current and circuits	Investigating one or more of the factors that affect resistance	No
B.5 Current and circuits	Determining internal resistance	No
E.3 Radioactive decay	Investigating half-life	Yes
C.3 Wave Phenomena	Investigating Young's double-slit (HL only)	No

C.3 Wave phenomena	Single-slit diffraction	No
D.3 Motion in Electromagnetic fields	Force on a current-carrying conductor	No
B.5 Currents and circuits	Measuring of potential difference and current	No
D.4 Induction	Lenz's law	No

4. Laboratory facilities

Describe the laboratory and indicate whether it is presently equipped to facilitate the practical work that you have indicated in the chart above. If it is not, indicate the timeline to achieve this objective and describe the safety measures that are applicable.

The physics laboratory includes the mechanical, electrical, optical and thermal equipment to meet the needs of the above topics, the group 4 project and the internal assessment.

Hands-on experiences are essential to learning in science classes, but safety must be the first concern. We have made the laboratory assistant handbook to clarify the laboratory policy and safety rules. The laboratory safety measures include the electric shock prevention measures and the fire prevention measures.

Electric shock prevention measures

- (1) The electric wire cross-sectional area and fuse adoption in the experiment power supply circuit should match the standards of safe power supply. Power supply circuit requires periodic inspection and replacement. When installing electrical equipment, current and voltage should match the nominal value of the electrical equipment. In normal situations, using electrical appliances should have ground wire (unless with special instructions), and ground wire should be regularly checked to make sure it is working well.
- (2) Install a main switchboard and leakage protector. Disconnect the main supply when leave the lab. Teacher should strictly control the students experimental electricity, and use as far as possible under 36 v safety voltage.
- (3) Maintain the power cords and electrical appliances. Cut off power supply when cleaning. Do not wet the power cord and do not touch working electrical equipment with wet hands. Fix all electric wires and the cover of electrical boxes on time to avoid casualty caused by high voltage wire exposure.
- (4) All electrical tools should have a good insulation handle. All electrical appliances should be connected with a grounding line.

Fire prevention measures

- (5) When using electric heaters such as electric soldering irons and electric stoves, they should not be put on combustible materials. When users leave, power supply should be cut off.
- (6) Inflammable and explosive chemical drugs should be stored strictly in accordance with regulations. When a large amount of alcohol or gasoline spilled on the ground, immediately open a window to ventilate the room. Indoor open flame is strictly prohibited. Gas should not be used to replace kerosene and alcohol for fuel.

5. Other resources

Indicate what other resources the school has to support the implementation of the subject and what plans there are to improve them, if needed.

The school has purchased reference books for the students to look up, and will buy more reference books based on interest of the students. When the students are planning for the group 4 project and preparing the internal assessment, the library will provide access to the needed database.

6. Links to TOK

You are expected to explore links between the topics of your subject and TOK. As an example of how you would do this, choose one topic from your course outline that would allow your students to make links with TOK. Describe how you would plan the lesson.

Торіс	Link with TOK (including description of lesson plan)
D.2 Electric and magnetic fields	Link with TOK : A discussion about 'empirical versus theoretical models' <u>Open Question:</u> How do cultural beliefs and values influence the way we approach empirical concepts of magnetism, such as the use of magnets in traditional medicine or spirituality?How it is related with theoretical concepts. <u>Empitical concepts:</u> Students are motivated to gather information such as the way we perceive empirical ideas of magnetism, such as the usage of magnets in traditional medicine or spirituality, can be significantly influenced by cultural beliefs and values. Magnets have been utilised for centuries to cure a wide range of diseases and disorders in many different civilizations. For instance, magnets are said to balance the body's energy and encourage healing in traditional Chinese medicine.
	Magnets are employed in healing rituals and are said to have spiritual power in some Native American societies. Theoritical Concepts: However, there may be instances where scientific proof or empirical data do not support the use of magnets in conventional medicine or spirituality. Here, theoretical notions of magnetism, such as the fundamentals of electromagnetic or quantum physics, can be employed to either support or contradict these assertions. For instance, the use of magnets in medical treatment may have advantages or disadvantages that can be determined by understanding how magnetic fields are produced and interact with the body. The students will use critical thinking in this topic.

7. Approaches to learning

Every IB course should contribute to the development of students' approaches to learning skills. As an example of how you would do this, choose one topic from your outline that would allow your students to specifically develop one or more of these skill categories (thinking, communication, social, self-management or research).

Торіс	Contribution to the development of students' approaches to learning skills (including one or more skill category)
Skills in the study of physics (Measurement in physics)	Activity: Deciding on what is fundamental:
Current and circuits	 Relationships in mathematics concerns the way that things connect together. Standard notation is used to help us represent size. Understand and use technology systems – Envoy (ATT) ATL : Research → Information literacy skills. (Understand and use technology systems)
	 For example, if the class is learning about types of circuits, the teacher could assign the following roles to students: Captain of the Series Circuit: This student would be in charge of explaining series circuits and demonstrating how they work. Parallel Circuit Prodigy: This student would be in charge of explaining and demonstrating the concept of parallel
	circuits. Circuit Analyzer: This student would be in charge of analysing various types of circuits and determining whether they were series or parallel.

Circuit Builder: This student would be in charge of building various types of circuits and testing their functionality.
Circuit Troubleshooter : This student is in charge of identifying and resolving issues that arise when circuits fail to function properly.
Each student would be responsible for completing their assigned tasks and assisting their classmates in understanding the concepts related to their specific topic throughout the week. Additionally, this activity can help students better understand the different types of circuits and how they function.

8. International mindedness

Every IB course should contribute to the development of international-mindedness in students. As an example of how you would do this, choose one topic from your outline that would allow your students to analyse it from different cultural perspectives. Briefly explain the reason for your choice and what resources you will use to achieve this goal.

Торіс	Contribution to the development of international mindedness (including resources you will use)
E.4 Fission	 To begin with, the study of nuclear fission and its uses has worldwide importance because it is a technology that may be utilized both peacefully and militarily. As a result, individuals must approach the study of fission from a global viewpoint, recognizing the possible benefits and threats of this technology for people all over the world. Understanding the worldwide legislation and agreements controlling the use of nuclear energy, as well as the various viewpoints and priorities of different countries, is part of this. We can ensure that the benefits of fission are shared fairly and equitably around the world by approaching the research of fission with a global perspective, addressing the ethical and social implications of this technology, and participating in discourse and collaboration with varied stakeholders.
	 <u>Resaon for choice:</u> The students will have a deeper understanding of the influences of the nuclear weapons, and think about the attitudes of different countries to nuclear weapons and the reasons behind them to belo the students develop.
	their international mildedness. Because the aim of all IB programmes is to develop internationally minded people who devote to create a better and more peaceful world.
	<u>Resources:</u> Nuclear Energy Institute: <u>https://www.nei.org/home</u>
	International Atomic Energy Agency : <u>https://www.iaea.org/</u> Department of Energy: https://www.energy.gov/
	Nuclear Regulatory Commission: https://www.nrc.gov/about-nrc.html
	MIT OpenCourseWare: <u>https://www.mygreatlearning.com/mit-idss-data-science-and-machine-learning-</u>
	program?&utm_source=Google&utm_medium=search&utm_campaign=MIT_DSML_Brand_Search_MIT&adg
	d=587438514674&gclid=Cj0KCQjwi46iBhDyARIsAE3nVrZsqC9ZWP8WZh_2n_U1QZW0aWUBgliyf4JuBT9iJvda8
	NcFc5bF4kEaAslhEALw_wcB

9. Development of the IB learner profile

Through the course it is also expected that students will develop the attributes of the IB learner profile. As an example of how you would do this, choose one topic from your course outline and explain how the contents and related skills would pursue the development of any attribute(s) of the IB learner profile that you will identify.

Торіс	Contribution to the development of the attribute(s) of the IB learner profile
A.2 Force and Momentum	Communicators : <u>Example Topic in Physics:</u> "Friction is more important than gravity in determining the motion of an object." 1 This can be done by Class debate activities can be very effective in improving students' critical thinking public
	 This can be done by class debate activities can be very effective in improving students critical trinking, public speaking, and communication skills. It can also encourage students to conduct research and gather data to back up their claims, thereby improving their research skills. Debate activities can also expose students to various points of view and worldviews, broadening their understanding of issues and increasing empathy for others. They can also encourage healthy debate and discourse among students, as well as improve their ability to handle disagreements and conflicts constructively.